157
Algorithm AS 311

The Exact Likelihood Function of a Vector Autoregressive Moving Average Model

By José Alberto Mauricio
Universidad Complutense de Madrid
[Received July 1993. Final revision October 1996]

Keywords: Invertibility; Maximum likelihood; Stationarity; Vector autoregressive moving average model

Language

Fortran 77

Description and Purpose

This algorithm has the same purpose as algorithm AS 242 of Shea (1989), namely to
compute the exact likelihood function of a vector autoregressive moving average
(ARMA) model. It turns out to be faster in many relevant cases and not appreciably
slower in any. In addition to the advantages offered by the algorithm of Shea (1989),
including the calculation of an appropriate set of residuals, it also permits the
automatic detection of non-invertible models as a by-product. The code presented
here combines improved versions of the algorithms due to Ljung and Box (1979) and
Hall and Nicholls (1980) with a corrected version of an algorithm due to Kohn and
Ansley (1982). The resulting procedure puts together a set of useful features which
can only be found separately in other existing methods.

Theory and Method

Let w, be an m-dimensional vector-valued time series. It is assumed that w, follows
the vector ARMA(p, g¢) model

®(B)w, = O(B)a,, (1)
where
®B)=1-®,B— ... —®,B,
®OB)=1-6,B— ... —O,B,
B is the backshift operator, w,=w, —u, ®, (i=1,2,....p),0;(i=1,2,... q)

and p are m x m, m x m and m x 1 parameter matrices respectively and the a;s are
m x 1 random vectors identically and independently distributed as N(0, 6°Q), with
o’ > 0 and Q (m x m) symmetric and positive definite. For stationarity, it is required
that the zeros of |®(B)| lie outside the unit circle. Likewise, the model will be inver-
tible provided that the zeros of |®@(B)| lie outside the unit circle.

JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C - APPLIED STATISTICS
Volume 46, Issue 1 (March 1997), Pages 157-171 [Statistical Algorithms]

158 MAURICIO

Consider a sam}?Ie of size n and define W = (W{, . . ., Wa)" (mean-corrected ob-
servatlons) 2= (al, ..., ay)" (white noise perturbatlons) and ux = (wl_p, WO,

al_ —gs - - Lag)t (unknown presample values). Then equation (1) may be wrltten as
Ds W = Dg_,a + Vus,

where Ds , and Dg , are nm x nm block matrices with identity matrices on the main
diagonal and —®; and —®,, respectively down the kth subdiagonal. Further, V is the
nm x (p + g)m block matrix V =(Gs,,, Ge.,), where Gs , and Ge , are the fol-
lowing nm x pm and nm x gm block matrices:

(® B, \ (-0, O, S
0 @, &, 0 -e, _®,

G'i’,n = 0 0 q)p 5 G@,n = 0 0 —@q
0 0 0 0 0 0

\o0 0 0) \ 0 0 .,

On the basis of the previous definitions, Nicholls and Hall (1979) have shown that
the exact log-likelihood of the parameters ® = (®;, .. ., ®,), ®© = (O, .. ., O,), u,
o’ and Q has the form

1 1
l(@: 63 K, 023 Qlw) = E {nm 10g(27r02)—|—n log |Q| +10g |ATA| +;S(@a 63 M, Q|W)}’

()

where, by means of extending and improving the procedures of Ljung and Box (1979)
and Hall and Nicholls (1980), it has been shown in Mauricio (1995a) that

S(®, 0, 1, Qw)=n"'n—M"'h)'Ad+MHHM) 'M"h) (3)

and
IATA| = |1+ M'"H'HM|. 4)

Subroutine ELF2 computes the expression on the right-hand side of equation (2) using
equations (3) and (4). Also, it optionally returns the residual vector, computed from

(5

TyyT —InaTw
azao_D6}n<M(I+M HOHM) M h>-

To evaluate equations (3), (4) and (optionally) (5), the following steps (Mauricio,
1995a) are performed within subroutine ELF2.

STATISTICAL ALGORITHMS 159

(a) Compute the Cholesky factor Q, of matrix Q (i.e. Q = Q,Q}), its determinant
|Q| = |Q,|* and a matrix R such that RQRT =1 (i.e. R = Q;).

(b) Evaluate the theoretical autocovariances I'(k) = o *E[W,W,..] (k=0, 1, . . .,
p—1) and the theoretical cross-covariances I'ya(k) = o—2E[W,a,.x] (k =0,
—1,..., —g+1).

(c) Compute the symmetric gm x gm matrix V,QV/], with g = max(p, ¢), where
V, consists of the first gm rows of V and © = o *E[u,ul]. Then, calculate its
Cholesky factor M (i.e. ViQV] = MM"). The (i, j)th m x m block of V,QV]
(i=1,2,...,gj=1,2, ..., i) 1is given by

pi q=i
(ViQV] = Z P, Eiyij— Z O, Eiipri
=0 =0
where, for j=1, 2, . . ., g, the required m x m E;-matrices are given by

p—i q—i
EU - Z I‘(k)q);—k—i—i—j - Z Pwa(_q +p+ k)®g—k—i—|—j

k=j—i k=j—i
i=12,...p),
2p—i
Eij = Z Fwa(_q +p - k)T(I)FZFp—k—Hj - Q@g—l-p—i—kj
k=p+j—i

(i=p+1,p+2,...,p+9q),

with T'(k) = T(—k)" for k < 0, Tya(k) =0 for k> 0 and ©, = 0 for i > g.
(d) Evaluate the m x m matrices 2 (k =0, 1, ..., n—1) as follows:

@jEk_j (k = 1, 2, N (s 1),

U
Il
MQ

1

.
I

with Ey =1 and E; =0 for k < 0. Then, premultiply every E; by (lower
triangular) R.

(e) Calculate the m x 1 vectors 5, = Ray; (i =1, 2, . . ., n), where
14 q
Ay = W; — Z Dw;; + Z ©a, ;- (=12, ...n),
J=1 J=1
where w; = 0 for i < 1 and ay; = 0 for i < 1.
(f) Compute the m x 1 vectors h; i =1, 2, . . ., g) as follows:
h=) ER'n, (i=1,2,...9).
=0
Then evaluate the gm x 1 vector M h, where h = (HT, N Hg)T.

(g) Evaluate the symmetric gm x gm matrix H'H. The first block column of H'H
1s given by

160 MAURICIO

H'H), = Z =EIRTRE,., (i=1,2...9),
k=0

and the remaining diagonal and subdiagonal m x m blocks of matrix H'H are
given by

(H'H); = (H'H),_; ;| — B, R'RE,ju,

withi=2,3,...,gand j=2, 3,

(h) Evaluate the sjymmetrlc gm X gm matrlx I+ M'H"HM, its Cholesky factor
L (ie. I+ M'H'HM = LL") and its determinant |I+M'H'HM| = |LJ%,
which is, in turn, the determinant (4).

(1) Use forward subst1tut10n to solve for A in the trlangular system LA = M'h.

() Compute the quadratlc form (3) as S(®, O, u, Q|w) =n'n — ATA, where np =

(771 5 0t nn) .
(k) Use backward substitution to solve for ¢ in the trlangular system LTc = A,
calculate the gm x 1 vector d = Mc and compute a;, =ap;—r; (i=1,2, .. ., n),

with the m x 1 vector r; given by

i

r, = Z Ei_jdj (l = 1, 2, Ce n)

=1
where d; 1s the jth m x 1 block of d (j=1,2,.. ., g)and d; =0 forj > g.

Subroutines CGAMMA, CXI and CRES are called from within subroutine ELF2
to carry out steps (b), (d) and (k) (optional) respectively. Some matrix computations
are performed by subroutines CHOLDC (which is called from within ELF2 to carry
out steps (a), (c) and (h)), CHOLFR (which is called from within ELF2 to carry out
steps (a) and (1)) and CHOLBK (which is called from within CRES to carry out step
(k)). Subroutine CGAMMA implements a corrected version (Mauricio, 1995b) of the
algorithm of Kohn and Ansley (1982), to evaluate the matrices I'(k) (k =0, 1, . . .,
p—1) and Ty.(k) (k=0, —1,..., —g+ 1) in a computationally more efficient
manner than the routine coded in Shea (1989). The procedure in subroutine
CGAMMA solves the system of linear equations

)4 p—1 p—i
') - Z ®L0)®; — {‘I’z+JF(l)‘I’ + @, F(I)T‘I’w} =W, (6a)
— =1 =1
k-1 p—k
L(k) - Y THRL—> T B, =W (k=1,2,....p—1), (6b)
=1 =0
for T(0), I(1), . . ., T'(p — 1), where T'(0) is the diagonal and upper triangle of

r'(0),

STATISTICAL ALGORITHMS 161

q
Wo=Q-(A+A)+> 6,Q6],

J=1

A = Z i (I)irwa(i _])(_);f’
- =

i=1

q
Wi=—) Tyk—))Of k=1,2,...,.p=1),
j=k
k
Lya(—k) = —0,Q +)~ ®l\ali — k) k=1,2,...,9—1),
i=1

with ®; = 0if / > p and T'y4(0) = Q (note that T'y,(k) = o >E[W.a,] = 0 for k > 0).
The resulting system contains m(m + 1; /2 +m*(p — 1) unknowns. Thus, subroutine
CGAMMA solves for m(m — 1)/2 + m~ fewer unknowns than subroutine COVARS
of Shea (1989), which unnecessarily solves for I'(0) through I'(p) instead of I’(0) and
I'(1) through I'(p — 1).

Structure

SUBROUTINE ELFI(M, IM, P,Q, N, W, PHI, THETA, QQ, ISMU, MU, ATF, A,
SIGMA2, XITOL, LOGELF, FI, F2, WS, NWS, IWS, NIWS, IFAULT)

Formal parameters
M Integer input: the number of time series, m (= 1)
IM Integer input: on entry, IM (= M) must specify the
leading dimension of the arrays W,
PHI, THETA, QQ and A as declared
in the user’s calling (sub)program
P Integer input: the value of p (= 0)
0 Integer input: the value of ¢ (= 0), but p=¢=201s
not allowed
N Integer input: the length of each series, n (= 1)
w Real array of input: on entry, W(I, J) must contain the
dimension Ith component of wy for I =1,
(IM, N) 2,.. .M, J=12,...,N
PHI Real array of input: on entry, PHI(I, (K — 1) x M +1J)
dimension must contain the (I, J)th element of
(IM,PxM+1) Py forI=1,2,.. ,M,J=1,
2,...M,K=1,2,...P
THETA Real array of input: on entry, THETA(I, (K — 1) x M +1J)
dimension must contain the (I, J)th element of Ok
(IM,QxM+1) forI=1,2,.. ,M,J=1,2,... M,

K=1,2...Q

162
Q0

ISMU

MU

ATF

SIGMA?2
XITOL

LOGELF
Fl
F2

)

NWS

Real array
of dimension
(IM, M)

Logical
Real array of
dimension M

Logical

Real array of
dimension
(IM, N)

Real
Real

Real
Real
Real
Real array of
dimension at

least NWS
Integer

MAURICIO

input/output:

input:

input:

input:

output:

input:
input:

output:
output:
output:

workspace:

input:

on entry, QQ(I, J) must contain the

(I, HDthelement of Q forI =1,2, ..., M,
J=1,2,... 1(.e. the lower triangle of
Q); on exit, if IFAULT =0 or IFAULT
> 9 then the strict upper triangle of QQ
is set equal to its lower triangle

set equal to .TRUE. if p # 0 and
FALSE. if u =10

if ISMU is set equal to .TRUE. then
MU(I) must contain the Ith component
of wforI=1,2,... M;if ISMU is set
equal to .FALSE. then MU is not used
set equal to .TRUE. if computation of
the residual vector is required and set to
.FALSE. otherwise

if ATF is set equal to .TRUE. then, on
successful exit, A(I, J) contains the Ith
component of ay for [=1, 2, ... M,
J=1,2,..., N;if ATF is set equal to
.FALSE. then, if IFAULT =0 or
IFAULT = 13, A(I, J) contains the Ith
component of ny forI =1,2, ..., M,
J=1,2,...,N

the value of o

convergence tolerance for the E;s; on
entry, it must be set to any negative
number if an exact evaluation of the
log-likelihood is desired; if an approx-
imate evaluation is desired or if ¢ =0
then it should be set to a small positive
number

on successful exit, contains the value of
the log-likelihood function (2)

on successful exit, contains the value of
the quadratic form (3)

on successful exit, contains the value of
|Q|" times the determinant (4)

the dimension of the array WS as declared
in the user’s calling (sub)program: NWS
>MxMxB+3xGxG+P+Q)
x G + B3) + Bl x Bl + B2 + M, where
G =max(P, Q),BI =M x (M +1)/2+
MxMxP-1)if P>0and Bl =1
otherwise, B2 = max(B1, G x M) and

B3 = max(N, Q)

STATISTICAL ALGORITHMS 163

WS Integer array workspace:
of dimension
at least NIWS
NIWS Integer input: the dimension of the array IWS as
declared in the user’s calling
(sub)program: NIWS > B1, where Bl
1s as for NWS
IFAULT Integer output: a fault indicator:
=11t M < 1;
=21 N<1;
=3if P <O0;
=4if Q < 0;
=51fP=0and Q=0;
=61if IM < M;

=7 1if NWS is too small;

=8 1if NIWS is too small;

=9 1f QQ is not positive definite;

= 10 if equations (6) for calculating the
I'(k)s could not be solved (this
indicates that the autoregressive
parameters are very close to the
boundary of the stationarity
region);

= 11 if the matrix VlﬂVlT 1s not positive
definite (this indicates that the
model is not stationary);

=12 if the Ejs turn out to be explosive
(i.e. if any given norm of Ej
increases with k; this indicates that
the model is not invertible);

= 13 if the matrix I+ M"H'HM is not
positive definite;

=0 otherwise (on a successful exit)

Subroutine ELF1 checks for errors in the input parameters, sets up workspace
arrays, calls subroutine MACHEP to compute the machine epsilon (used by
subroutine CHOLDC) and then calls subroutine ELF2 to evaluate the exact log-
likelihood function. A description of the formal parameters of ELF2 is given next.

SUBROUTINE ELF2(M, IM, P, Q, N, G, W, PHI, THETA, QQ, ISMU, MU, ATF,
A, SIGMA2, XITOL, LOGELF, Fl, F2, EPS, BIGI, BIG2, BIG3, QI, QIINV,
MTMP4, VTMPI, VIMP2, MATPHI, MTMPO, MTMP2, MTMP3, MTMPI,
GAMXI, INDX, IFAULT)

Formal parameters
M, IM, P, O, N input: as for ELF1
G Integer input: max(P, Q), set by ELFI

W, PHI, THETA input: as for ELF1

164 MAURICIO

(0]0, input/output: as for ELF1

ISMU, MU, ATF input: as for ELF1

A output: as for ELF1; A is given values in ELF2

SIGMA2, XITOL input: as for ELF1

LOGELF, Fl, F2 output: as for ELF1; LOGELF, F1 and F2 are
given values in ELF2

EPS Real input: the machine epsilon (set within ELF1)

BIG1 Integer input: BIGI =M x (M +1)/24+ M x M x

(P—1)if P > 0 and BIG1 = 1 otherwise;
this value is set by ELF1

BIG?2 Integer input: max(BIG1, G x M) (set by ELF1)
BIG3 Integer input: max(N, Q) (set by ELF1)
Ql1, QIINV, Real
MTMPA4, workspace
VTMPI, arrays
VTMP2,
MATPHI,
MTMPO,
MTMP?2,
MTMP3,
MTMPI,
GAMXI
INDX Integer
workspace
array
IFAULT Integer output: a fault indicator; on exit from ELF2,

IFAULT will have either the value 9,
10, 11, 12, 13 or O

Subroutine ELF2 implements the steps described in the previous section to calculate
the log-likelihood function. One of these steps is the computation of the covariance
matrices I'(k) (k=0,1,...,p—1) and T'ya(k) (k=0, —1,..., —qg—+1). This is
done by subroutine CGAMMA, which implements a corrected version (Mauricio,
1995b) of the method of Kohn and Ansley (1982).

SUBROUTINE CGAMMA(M, IM, P, Q, PHI, THETA, QQ, BIGI, MAT,
WZERO, MZERO, GAMWA, RHS, INDX, IFAULT)

Formal parameters
M, IM, P, Q, Workspace input: as for ELF2
PHI, THETA, arrays

00, BIGI

MAT,

WZERO,

MZERO, INDX

GAMWA Real output: on successful exit, GAMWA(, K x M+
workspace J) contains the (I, J)th element of
array Fya—K)forI=1,2,.. , M,J=1,

2,..,M,K=0,1,...Q-1

STATISTICAL ALGORITHMS 165

RHS Real output: on successful exit, RHS(J x (J —1)/2 4+ 1)
workspace contains the (I, J)th element of I'(0) for
array I=1,2,.. M, J=L1+1,..., Mand

RHSM x M+ 1)/24+MxM x (K—-1)+
M x (J — 1) 4+ 1) contains the (I, J)th element
of 'K) forI=1,2,.. .M, J=1,2,...,
M,K=1,2,...,P—-1
IFAULT Integer output: a fault indicator:
— 1 if equations (6) could not be solved
(in which case IFAULT is returned from
ELF2 as 10);
— 0 otherwise (on successful exit)

Subroutine ELF2 also calls subroutine CXI, which computes recursively the
matrix sequence Z; (k =0, 1, ..., n—1). This is a key step to check for invertibility
of the model.

SUBROUTINE CXI(M, IM, N, O, THETA, XITOL, R, NLIM, XI, MTMP,
IFAULT)

Formal parameters
M, IM, N, Q, input: as for ELF2
THETA,
XITOL
R Real input: on entry, R(I, J) must contain the (I, J)th
workspace element of RforI=1,2,... . M,J =1,
array 2,..., 1,as set by ELF2
NLIM Integer output: on successful exit, NLIM is such that E; =0
for £ > NLIM
X1 Real output: on successful exit, XI(I, M x K + J) contains
workspace the (I, J)th element of RE; for I =1, 2,
array oM =1,2,.. M,K=0,1...,
NLIM
MTMP Real
workspace
array
IFAULT Integer output: a fault indicator:

=1 if the computation of the sequence =i
turns out to be explosive (in which case

IFAULT is returned from ELF2 as 12);
= 0 otherwise (on successful exit)

Optionally (if ATF was set equal to .TRUE. on entry to ELF1), subroutine ELF2
ends with a call to subroutine CRES, to calculate the residual vector by using some
of the computations carried out so far to evaluate the log-likelihood.

166

MAURICIO

SUBROUTINE CRES(M, IM, N, G, NLIM, XI, Q1, MATM, MATL, LAMBDA, RES)

Formal parameters
M, IM, N, G input:
NLIM Integer input:
X1 Real input:
workspace
array
0l Real input:
workspace
array
MATM Real input:
workspace
array
MATL Real input:
workspace
array
LAMBDA Real input:
workspace
array
RES Real array of input/output:

dimension
(IM, N)

as for ELF2

on entry, NLIM must be such that

Er = 0 for k > NLIM, as set by CXI
from within ELF2

on entry, XI(I, M x K 4+ J) must
contain the (I, J)th element of RE, for
=12 .. MJ=12,..., M,
K=0,1,... NLIM, as set by CXI
from within ELF2

on entry, QI(I, J) must contain the
(I, J)th element of the Cholesky factor
Q ofQforI=1,2,... ., M,J=1,
2,...,1,as set by ELF2

on entry, MATM(I, J) must contain
the (I, J)th element of the Cholesky
factor M of V,QV! for I=1,2, .. .,
GxM,J=1,2,... Lasset by ELF2
on entry, MATL(I, J) must contain
the (I, J)th element of the Cholesky
factor L of I+ MTH"HM for I = 1,
2,..., GxM,J=1,2,...1, as set
by ELF2

on entry, LAMBDA(I) must contain
the Ith element of A (the solution of
the triangular system LA = M"h) for
I=1,2,... G x M, as computed
within ELF2

on entry, RES(I, J) contains the Ith
component of i, for I =1,2,....M,
J=1,2,..., N, asset by ELF2; on
exit, RES(I, J) contains the Ith com-
ponent of ajfor I =1,2,..., M,
J=12,...,N

The following subroutines are also called from within ELF2. Subroutine
CHOLDC returns the Cholesky factor of a symmetric real matrix M, and its deter-
minant in the form «2”. Subroutine CHOLFR solves for x in the system Lx = b, with
L lower triangular, using forward substitution.

SUBROUTINE CHOLDC(M, NDIM, N, DI, D2, EPS, IFAULT)
Formal parameters

M

Real array of input/output:

dimension
(NDIM,
NDIM)

on entry, contains the matrix M (only
the upper triangle is needed); on
successful exit, contains the required
Cholesky factor with the strict upper
triangle set to 0

STATISTICAL ALGORITHMS 167

NDIM Integer input:
N Integer input:
DI Real output:
D2 Real output:
EPS Real input:
IFAULT Integer output:

the declared dimension of M

the order of M

on successful exit, DI is set equal to a
in the expression M| = 2'q

on successful exit, D2 is set equal to b
in the expression |M| = 2°q

the machine epsilon, as set by MACHEP
with a call from within ELF1

a fault indicator:

=1 if M 1s not positive definite;

=0 otherwise (on a successful exit)

SUBROUTINE CHOLFR(MATL, NDIM, N, RHSOL)

Formal parameters
MATL Real array of input:
dimension
(NDIM,
NDIM)
NDIM Integer input:
N Integer input:
RHSOL Real array of input/output:
dimension
NDIM

Finally, subroutine CHOLBK is called fro
¢ in the system L'c = X, with L lower tri

on entry, contains the lower triangular
matrix L

the declared dimension of L

the order of L

on entry, contains the right-hand side
vector b; on exit, contains the solution
vector X

m within subroutine CRES to solve for
angular, using backward substitution.

Subroutine MACHEP is called from within subroutine ELF1 to calculate the

machine epsilon.

SUBROUTINE CHOLBK(MATL, NDIM, N, RHSOL)

Formal parameters
MATL Real array of input:
dimension
(NDIM,
NDIM
NDIM Integer input:
N Integer input:
RHSOL Real array of input/output:
dimension
NDIM

SUBROUTINE MACHEP(EPSIL)

Formal parameter
EPSIL Real output:

on entry, contains the lower triangular
matrix L

the declared dimension of L

the order of L

on entry, contains the right-hand side
vector \; on exit, contains the solution
vector ¢

the machine epsilon

168 MAURICIO
Auxiliary Algorithms

Subroutines DECOMP and SOLVE in Moler (1972) are used to solve the system
of linear equations (6) within subroutine CGAMMA.

Restrictions

Subroutine ELF2 will terminate abnormally if the model turns out to be either
non- statlonary or non-invertible. The model will be non-stationary if the matrix
V.QV] is not positive definite. This is detected by subroutine CHOLDC, which in
turn will make ELF2 return IFAULT = 11. The model will be non- 1nvert1ble if the
computation of the matrix sequence Z; is explosive, i.e. when

m min(k, g) m
> =) > Z {Z Z =e m}

=1 j=1

for at least one & < n — 1. This check for non-invertibility takes place within sub-
routine CXI and, if it holds, ELF2 will return IFAULT = 12. However, the exact
likelihood can still be evaluated when any root of the moving average operator lies
on the unit circle, provided that the other roots have moduli larger than 1.

To calculate the log-likelihood function for the model

W, =+ a,

(i.e. to take p = g = 0), ¢ should be set to 1 and the first m rows and columns of
THETA to 0 (note that p = ¢ = 0 is not allowed by subroutine ELF1 since some of
the workspace arrays in ELF2 would have zero length).

Although subroutine ELF1 will not flag an error if NV is set to 1, it is left to the user
to ensure that N x M is greater than the number of parameters in the model.

Precision

When using the present algorithm on machines with small word length, all the real
variables should be replaced by double-precision variables. This amounts to
replacing all declarations of type REAL by declarations of type DOUBLE
PRECISION and all remaining occurrences of REAL by DBLE. To make an
accurate and machine-independent decision on whether a given symmetric real
matrix is not positive definite, subroutine CHOLDC makes use of the quantity
machine epsilon as discussed in Dennis and Schnabel (1983), pages 318-319.
Overflow or underflow will not occur in the calculation of |Q| and |I + MTH'"HM|
since these determinants are stored in the form 2’4 (Martin and Wilkinson, 1965).

Accuracy

When the model considered is invertible, the matrix sequence Z; converges to 0,
the more quickly the larger the moduli of the zeros of |®(B)| are (when ¢ =0, it
is clear that E; =0 for k > 1). This fact may be exploited in the subsequent
computations involved in steps (f), (g) and (k) within subroutine ELF2, since if
Er = 0 for, say, k£ > r* then not all of these operations need to be carried out. The

STATISTICAL ALGORITHMS 169

sequence =; may be considered to have converged when

m

SN 1Bl <6,
j=1

i=1

where the parameter 6 > 0 can be used to control the desired degree of approx-
imation to the exact computation of the whole sequence. However, to avoid
complications due to any ®; =0 for i < ¢g (i.e. in the case of seasonal or gapped
models), once the above condition has been met, subroutine CXI calculates the next
q Zis following E,« to make sure that convergence has effectively occurred. The
convergence criterion can be made sufficiently rigid (i.e. ¢ sufficiently small) that the
error implied by considering =, = 0 for k > r* becomes negligible.

This property, which may save much computing time, is analogous to the ‘quick
recursions’ property offered by the Chandrasekhar equations that form the basis of
the method of Shea (1989), pages 169-170. Thus, the comparisons between the exact
(calculated with E; from k =1 to kK = n — 1) and the ‘approximate’ (calculated with
=i = 0 for k > r*) log-likelihood functions for any given model display results which
are very similar to those reported by Shea (1989).

Timing and Related Algorithm

The algorithm implemented in subroutine ELF2 requires fewer time-consuming

TABLE 1

Ratios between the number of multiplications and divisions required by algorithm AS
242 of Shea (1989) and those required by subroutine ELF2 for several vector ARM A

models
Model Ratios of operations for the following values of m and n:
m=2 m=4
n =100 n =200 n =100 n =200
AR(1) 1.19 1.10 3.88 2.65
AR(2) 1.27 1.14 3.41 2.79
MA(1) 2.46 2.49 2.81 2.83
MA(2) 1.88 1.91 2.09 2.11
ARMA(1, 1) 2.52 2.54 3.39 3.21
AR(1),4 1.18 1.13 2.16 2.07
MA(1), 1.47 1.53 1.60 1.67
ARMA(1, 1), 1.56 1.66 2.04 2.03
AR(1), 0.84+ 0.85% 1.27 1.27
MA(), 0.81F 1.00 0.847 1.06
ARMA(, 1), 0.91% 1.05 1.25 1.29
AR(1) x MA(1)4 1.50 1.57 1.77 1.79
AR(1) x MA(1), 0.81% 1.00 0.86% 1.08
MA(1) x AR(1), 1.57 1.64 2.08 2.02
MA(1) x AR(1);, 0.90% 0.987 1.27 1.27
ARMAC(I, 1) x AR(1), 1.40 1.49 1.85 1.82
ARMA(1, 1) x MA(1), 1.37 1.46 1.59 1.65
ARMAC(1, 1) x AR(1), 0.87 0.947 1.23 1.24
ARMA(1, 1) x MA(1);, 0.75% 0.967 0.80% 1.02

tAlgorithm AS 242 requires fewer time-consuming operations than the new algorithm.

170 MAURICIO

operations than algorithm AS 242 of Shea (1989) does in many cases. To see this, the
exact log-likelihood function has been evaluated for a variety of vector ARMA
models. In Table 1, the ratio between the number of multiplications and divisions
required by the algorithm of Shea (1989) and those required by subroutine ELF2 is
presented for each of the models considered.

It can be seen that algorithm AS 242 requires fewer time-consuming operations
than the new algorithm only for low dimension (m = 2) high order models, whereas
the new algorithm performs faster than algorithm AS 242 (by a factor of more than 2
in many cases) for higher dimension (m = 4) models. In fact, the relative efficiency of
the new algorithm increases with the dimension m of the model (and, in almost all
cases, with the series length n also). Thus, the ratios for m = 4 and n = 200 are all
advantageous to the new algorithm, irrespective of the orders p and g.

A similar table can be constructed using timings rather than operation counts. In
that case, the timing ratios are all advantageous to the new algorithm for the models
considered in Table 1. This fact shows not only that the new algorithm requires fewer
time-consuming operations than algorithm AS 242 of Shea (1989) does but also
that it is more efficiently coded (by means of, for example, carrying out within a
single loop two or more tasks which might be included within two or more different
loops).

Additional Comments

The main purpose of subroutine ELF2 is to serve as an integral part of an exact
maximum likelihood estimation program for vector ARMA models. It can be shown
(Mauricio, 1995a) that maximizing the exact likelihood function is equivalent to
minimizing

S(®, ©, p, Q|w)" |Q| [ATA|'".

Since, on successful exit, subroutine ELF2 returns S(®, ©, u, Q|w) (the quadratic
form in the exact likelihood) and |Q|" |[ATA| (the determinant in the exact likelihood)
as F1 and F2 respectively, it is straightforward to use that output in the computa-
tion of the objective function to be minimized. Further, since subroutine ELF2
automatically detects parameter values that imply non-stationarity, non-invertibility
and/or non-positive definiteness of Q, an objective function that penalizes these
situations can be constructed following the guidelines in Shea (1984) and Mauricio
(1995a). The residual vector should be evaluated (using subroutine CXI) only after
the minimization routine has converged, since it is not used during the estimation
process. Finally, note that the computations involved in this process can be speeded
up by using the approximation to the exact likelihood function (based on the
convergence of the E;s to 0) discussed previously.

Acknowledgements

I am grateful to Arthur B. Treadway, under whose supervision this work was
carried out, to the Algorithm Editor and the referee for some helpful suggestions,
and to Sonia Sotoca for some useful hints on the Fortran compiler.

STATISTICAL ALGORITHMS 171

References

Dennis, J. E. and Schnabel, R. B. (1983) Numerical Methods for Unconstrained Optimization and
Nonlinear Equations. Englewood Cliffs: Prentice Hall.

Hall, A. D. and Nicholls, D. F. (1980) The evaluation of exact maximum likelihood estimates for
VARMA models. J. Statist. Computn Simuln, 10, 251-262.

Kohn, R. and Ansley, C. F. (1982) A note on obtaining the theoretical autocovariances of an ARMA
process. J. Statist. Computn Simuln, 15, 273-283.

Ljung, G. M. and Box, G. E. P. (1979) The likelihood function of stationary autoregressive-moving
average models. Biometrika, 66, 265-270.

Martin, R. S. and Wilkinson, J. H. (1965) Symmetric decomposition of positive definite band matrices.
Numer. Math., 7, 355-361.

Mauricio, J. A. (1995a) Exact maximum likelihood estimation of stationary vector ARMA models. J.
Am. Statist. Ass., 90, 282-291.

———(1995b) A corrected algorithm for computing the theoretical autocovariance matrices of a vector
ARMA model. Working Paper 9502. Instituto Complutense de Analisis Economico, Madrid.

Moler, C. B. (1972) Algorithm 423: Linear equation solver. Communs Ass. Comput. Mach., 15, 274.

Nicholls, D. F. and Hall, A. D. (1979) The exact likelihood function of multivariate autoregressive-
moving average models. Biometrika, 66, 259-264.

Shea, B. L. (1984) Maximum likelihood estimation of multivariate ARMA processes via the Kalman
filter. In Time Series Analysis: Theory and Practice (ed. O. D. Anderson), vol. 5, pp. 91-101.
Amsterdam: North-Holland.

(1989) Algorithm AS 242: The exact likelihood of a vector autoregressive moving average model.

Appl. Statist., 38, 161-184.

